Saturday, September 10, 2016

Musée des Confluences in Lyon, France (2001/2010-2014)

By: Gzng Sedeeq

Right from the 2001 international competition for a natural history museum in Lyon, the museum was envisioned as a "medium for the transfer of knowledge" and not as a showroom for products.

The building ground of the museum is located on a peninsula that was artificially extended 100 years ago and situated in the confluence of the Rhône and Saône rivers. Even though it was apparent that this site would be a difficult one (536 piles had to be securely driven 30 meters into the ground), it was clear that this location would be very important for the urban design. The building should serve as a distinctive beacon and entrance for the visitors approaching from the South, as well as a starting point for urban development.

In order to build a museum of knowledge, a complex new form had to be developed as an iconic gateway. A building that truly stands out can only come into being through shapes resulting from new geometries. It was important to the concept that the flow of visitors arriving from the city to the Pointe du Confluent should not be impeded by a building. The idea was therefore to develop an openly traversable building that would be floating in part only on supports, in order to create a public space underneath.

Essentially, the building consists of three parts. Situated on a slightly raised base (due to the high groundwater), two auditoriums (for 327 and 122 persons, respectively) and work spaces, which will also be used for training purposes for the surrounding schools, will be located next to storage and workshops for the production of exhibitions.

The entrance building, the so-called Crystal, is openly traversable, and a vertical access to the exhibition spaces. The so-called Espace liant, a connecting path, can be reached by an escalator, a staircase, and a spiral ramp. Left and right of this path are arranged the individual exhibition halls (one of them two-level), and at the end is a view of the confluence of two rivers, the Pointe du Confluent. The steel structure, conceived as a bridge construction, made it possible to develop all of the exhibition halls without supports. The administration rooms are located above the exhibition spaces.

In the Plaza below this highly raised, almost flying component – the showrooms are broadly cantilevered in parts – the lit wave pattern of the surface of a small lake is reflected on the underside of the building. A brasserie emphasizes the public nature of this place. A freely accessible terrace café is located on the top floor.

In the entrance building, a drop-shaped construction serves as supporting structure. Its form was developed out of the turbulent flow created by the confluence of the two streams. This gravity well reduces the weight of the entire steel structure of the entrance building by a third.

Project data

SITE AREA:                                 20,975 m²
GROSS FLOOR AREA:                 46,476 m²
NET FLOOR AREA:                      26,700 m²
FOOTPRINT:                                  9,300 m²
CONSTRUCTION COSTS:          € 3,980 / m² / total € 185 Mio

VOLUMES (V)                     total 195,206 m³
Base (incl. Brasserie)                     59,436
Crystal / Foyer                              25,770
Cloud / Exhibition space              110,000 m³

Length:                                              190 m
Width:                                                  90 m
Height:                                                 41 m

2 auditoriums with 327 and 122 seats
working rooms for classes, conference and meeting rooms,
storage, workshops, HVACR, logistics, group entrance
brasserie on top (publicly accessible)

Main entrance, foyer, librairie / shop

9 Exhibition rooms                                     
Level 1: temporary exhibitions (5 rooms) + public ateliers for workshops
Level 2: permanent collections (4 rooms) + public ateliers for workshops
Level 3: administration
Roof top café (publicly accessible)

Competition:                                                     2001
Preliminary design / Design development:          2002-2004
1. Tender / Dialog Competitive:                          2004-2006
Construction phase 1 (pile foundation):              2006-2007
Stop of construction:                                        2007-2009
2. Tender / Execution design:                             2009-2010
Construction phase 2:                                        2010-2014
Completion:                                                      12/2014

Technical Description

Environmental concept

The foyer (Crystal) is a naturally ventilated space. The supply air enters via glazed ventilation flaps inside the east facade while the exhaust air exits via the roof area. It is therefore unnecessary to use a traditional air conditioning system. Only the main access areas and workspaces are microclimatic units whose comfort is ensured through local heating and cooling systems. The floors are cooled via ground water. This will result in significant energy savings for the museum’s foyer in the long term.
In terms of thermal insulation, the facades of the exhibition area (Cloud) are characterized by an extremely efficient building shell. All of the main access areas are illuminated naturally (not much artificial light); the water supply of the sanitation areas is provided through the ground water. A photovoltaic system is installed on the roof.


The base is designed as a reinforced concrete structure with exposed concrete walls.

Foyer / “Crystal”:
A tubular lattice with a rectangular profile of 400 x 200 mm forms the primary support of the Crystal. It rests on the concrete structures of the base and the main supporting structure of the Cloud. The center of the Crystal is occupied by the Puits de gravité, which continues the primary support and plays the role of a major support element that diverts all forces. It reduces the weight of the entry building’s entire steel construction by a third.
The secondary support structure carries the large glass panels. It consists of steel tubing arranged in the grid of the glass panels. It is connected to the primary support structure via struts made of tubes that are screwed to panels welded to the primary supports.
Blinds between the primary and secondary supporting structure protect the most sun-exposed areas and also reduce noise.  
The glass consists of single-glazed panels with extra-clear glass.
A large amount of glazed, openable windows in the different areas of the Crystal provide natural ventilation. They can be opened through a motor. Additional deeper and higher openings can provide smoke extraction in case of fire. The four different entry sequences consist of large glass doors. The main entrance has a large canopy that is connected to the primary support structure and clad with metal sheets, like the Cloud. 

Exhibition area / “Cloud”:
The Cloud’s structural system resembles a bridge structure. It rests on 12 concrete supports and three concrete towers that contain the emergency stairs and shafts. Room-high steel frameworks form the walls of the black boxes for permanent and temporary exhibitions.  
The outer skin of the Cloud consists of 3-mm stainless steel plates that have been blasted with glass beads. This special surface treatment results in a gentle reflection of the light and colors of the surrounding area.

Saturday, September 3, 2016

“Pavilion 21 MINI Opera Space”, Munich, Germany (2008-2010)

Gzng Sedeeq

Study: 02/2008
Start of Planning: 10/2009
Start of Construction: 04/2010
Opening: 06/2010

Site area: 1,790 m²
Gross area: 560 m²
Net area: 430 m²
Footprint: 560
Height: 12.5 m
Length: 38.5 m
Width: 25.5 m

The Pavilion  was created as temporary mobile space for experimental performances of the Bavarian State Opera in Munich. The dismountable construction offers place for 300 sitting or 700 standing spectators and can transported in normal freight containers.
Its modular construction makes it possible to re-mount the pavilion on any site or different urban structures and to adapt it to the particular needs.

Mass and therefore weight are the decisive criteria for good acoustics. The conception of the Pavilion 21 MINI Opera Space therefore had to overcome a contradiction: to design a lightweight construction which must allow to be dis- and re-assembled quickly, but which at the same time meets the acoustical requirements of a concert hall.
Hence how do you create the conditions for good acoustics despite a reduction of mass? Already the first considerations fixed in drawings show the basic idea of the Pavilion to introduce architectural elements which are on the one hand the spatial transformation of sound sequences, and which on the other hand develop sound reflecting and absorbing properties through their pyramid-like shape: “Soundscaping”.

Acoustics & Sounds aping

The strategy to achieve soundscaping comprises three steps: Firstly, to realize the shielding effect between square and street, secondly, to shape the geometry of the Pavilion in such a way that the surface deflects noise, and thirdly, to design the surface of the Pavilion in such a way that it reflects and absorbs sound.

In cooperation with the London based acoustic consultant Arup acoustic pyramids have been developed for the façade, which rise in all directions and – thanks to their special geometry – absorb and reflect the street noise to create a ‘zone of silence’. Beside this function the pyramids also have an effect on the vibration of the structural elements and therefore on the acoustic in the concert hall.

The design of the pyramids resulted from the abstraction of music into spatial form. As a starting point, a sequence from the song “Purple Haze” by Jimi Hendrix and a passage from “Don Giovanni” by Mozart were transcribed. Through the analysis of frequency sections from these pieces of music and in combination with the computer generated 3D model, the sequences are translated into pyramidal “spike constructions” by means of parametric “scripting”. Music becomes space.

The idea to combine architecture with music is not new. Also the term soundscaping is not new. Similar to landscaping it involves “Gestalt”. Soundscaping originates in the 1940’s and designates a method of composing. In architecture, Le Corbusier and Iannis Xenakis together engaged in the topic of music and architecture when they thought about three-dimensional implementation of musical compositions (Le Corbusier’s Philips Pavilion and the partition of the windows in La Tourette).

Light Installation

Towards the street and the Marstall square the outer shell is detached from the tilted double-layer façade and opens an interstitial space that offers a weather-protected lounge and bar area. The accessible, crystal-like double skin – the transcribed music –forms a transitional space from the plaza to the entrance and into the main performance space. A folded and cantilevered roof emphasizes the main entrance.

The architectural design of the inner space is complemented and enhanced by an installation in the lounge developed by cat-x. The complex multiple projection not only illuminates the interior of the lounge, but interacts with the sounds from the concert hall.  These light movements change the perception of the space, so that the architecture seems to move.

Tuesday, May 24, 2016

Summer Break

Salukitecture takes the summer off so there will be no new posts on this site until the fall semester begins.  The semester begins August 22 and the next time new posts will be on this site will be about two weeks after the semester begins.  Have a great summer!  JKDobbins

Monday, May 9, 2016

Ise Grand Shrine

By: Stephen Lauer

Shrines usually have similar architectural features that signify that the structure is a prayer location. The first feature is a torii, which denotes the entrance or approach to the shrine. The purpose of torii is that they are the gate that divides the earth and the spirit world as Shinto shrines do not exist on earth according to Shinto teachings. The ground the shrines sit on is on earth but the structures and homes for the deities are in the spirit world thus allowing the deities to hear the people’s prayers much easier. Most torii are made out of wood but can be made out of other various materials and painted different colors. The main color scheme for torii is orange and black. The next feature is the komainu which are a pair of dogs or lions that guard the shrine. These are usually located by the entrance to the shrine to oversee who enters the shrine. Next is the purification trough which allows people to wash their hands and mouths before entering the shrine. Anyone that is sick, has open wounds, or is mourning must wash before entering to remove the impurities that you are bringing in. Next is the main building and offering hall which usually consist of separate buildings. The main hall is where the sacred artifacts are stored and kept safe while the offering hall is where the visitors come to say their prayers and give their offerings to the shrine. The next feature is not at all shrines but is a stage for bugaku dance or noh theater. Noh theater are songs and dances that tell the stories of legends, history, literature and even current events. Ema are the next feature at shrines and are a place for visitors to write their wishes down and leave behind in hopes that the deities will see them and make them come true. The most wished for things include good health, success, passing exams, love, and wealth. Omikuji are hung throughout shrines and are paper slips with fortunes on them. The fortunes written on them range from very good luck to very bad luck and it is said that by tying the fortune to a tree branch the good will come true and the bad can be prevented. The final feature is shimenawa which is a straw rope with white paper hanging from it to denote a sacred on the other side of the rope. Usually these are placed on torii gates to signify the shrine on the other side being sacred. One feature that will never be found at a Shinto shrine is a cemetery as death is seen as an impurity and therefore not dealt with by the Shinto shrines.
Ise Grand Shrine is the shrine dedicated to the most important deity in the Shinto religion, Amaterasu, the sun goddess. The shrine is made up of a complex of buildings which in total is roughly 125 different buildings. The main buildings in the shrine resemble granaries and do not resemble any other Asian architecture style. Naiku, the inner shrine, and Geku, the outer shrine are both disassembled and rebuilt with new materials every twenty years to keep the building fresh and new for the deities. This tradition just completed its 62nd rebuilding in 2013 making the 63rd to happen in 2033.

Low Poly Perspective of the Ise Grand Shrine

Thesis Efficient Space

By: Patrick Szczecina

            The first issue that arises that the thesis is aiming to solve is that of space usage on the interiors. When looking at interior spaces many areas are larger than they need to be or areas are smaller and need more space. When putting in adjustable walls that allow for sliding or swinging this can solve the issue above. An example of this can be the factor of one space being large and being used as multiple areas. A wall can be moved to create a new space, i.e. cut the room in half and now creating two rooms. The space can be a living or dining room, being it the largest public rooms in a home, and later can have a wall turn or slide to create a new space such as a bedroom. An architect stated that "had the added effect of unbalancing the overall proportions of living / sleeping / cooking / washing space in the flat."11 For a space to work properly all spaces need to be proportional to others and for the needs that they are meant for. This goes for both sides having a large kitchen but small dining rooms doesn’t feel right and doesn’t work correctly. Along with the idea of walls that are adjustable, another factor is that a floor is able to be adjusted. In this context the floor and walls need to be adjustable where the walls follow the floor itself. The floor can slide from an interior space past the exterior wall to create a new space. From the original room that can be rather small the floor that moves extending into the outside creates new interior spaces. The spaces within a structure all can be manipulated based on a user’s need, be it larger gathering spaces, more room for bedroom, and more room for the kitchen. This amplifies the usage of spaces to be maximized to the fullest potential and to allow as little waste of space as possible. Transformative architecture tries to solve the issue of spaces not being used or underused, by allowing spaces to be manipulated into different spaces that may be used. These spaces must function to that of users, “The suitability of the work to use by human beings in general and the adaptability of it to particular human activities, (2) the stability and permanence of the work’s construction, and (3) the communication of experience and ideas through its form.”15 This also allows for small square footage spaces to be transformed into higher capacity areas that will be used more.
11 Robarts, Stu. "Tiny German Apartment Makes Clever Use of Space." Tiny German Apartment Makes Clever Use of Space. Gizmag, 7 May 2015. Web. 16 Dec. 2015.
15 Gowans, Alan. "Architecture." Encyclopedia Britannica Online. Encyclopedia Britannica, n.d. Web. 16 Dec. 2015.


The Last Blog

By: Megan Crider

This is the last blog of the semester – and the last one I will have to write.  It is the end of April (the 27th to be exact).  Graduation is two and a half weeks away…. I. Can’t. Believe. It.  This is crazy! We are almost finished with grad school – it seems like we have only merely begun.  School normally goes by quickly anyway (in my opinion), but this feels like it has gone by even faster. 
This has been a great experience.  I truly have enjoyed getting to know my fellow classmates.  Our class is such a diverse group of people with a wealth of different experiences and backgrounds.  It has been exciting to meet and develop relationships with them.  The student-instructor dynamic has also been a more rewarding one.  I feel like, as graduate students, we are viewed more as colleagues and less as students.  That changes the whole ‘feel’ of the classroom – it seems more professional and there is a different level of mutual respect.

Don’t get me wrong though, there have been some trying times (isn’t there always though?).  Times where we thought, “eff it, I already have a degree” and times when we have wanted to pull our hair out.  And I am quite certain that tears may have been shed at other times.  But through it all, we have stuck together and have weathered the storms of graduate school – and it has been worth it.  We are almost there! I am looking forward to graduating and completing my thesis and beginning the chapters of my life that begin after school.

Thursday, May 5, 2016

Last but not the least: Retrospection of a Year Long Journey

By: Kristina Shrestha

A year long journey started from the very first day at SIUC. The very first blog reminds me of the pristine memories and experiences I have ever had as a new Graduate student. Now, I am here posting my last blog. Last but not the least, this blog will retrospect and summarize the year long journey here at SIUC.
Despite ups and downs, this journey will be a major milestone for my career and will be a very good lesson for the future. No doubt, I learned a lot. I honed my skills on software and tools that will act like my backbone for my upcoming career. Revit, 3Ds max, Rhino, and Grasshopper were challenging to me at first glance but now situation has changed a lot. I am honed my skills on these tools including AutoCAD and Sketch Up that I had been using for almost a decade.
As mentioned above, today I am going to write about my projects so far. The first project that I had accomplished in last summer was “Open Air museum of Buildings” designed imitating nature. It is located at Little Grassy Lake, Illinois. The opening building had to be designed in such a way that it will relate to other buildings which were in display at that time. The buildings that I chose for the open air museum and buildings from nature were Falling Water House, Leaf House, Shell house, Casey Kay house and Pod Exhibition Pavilion. The opening building was the first building which would provide the facilities for the visitors.
The second project was the planning of a city in Glenelg, Maryland. The master planning had to be done in groups of three and we had choice to select buildings for an individual project. There were five choices. i.e., Apartments, Hotels, Community Centers, Senior Living and Retails. I selected mid-rise apartment for the design. The project included 11 floors and 8 floors apartments. They were two bedroom, three bedrooms and four bedroom apartments. They were located near the community center and the retail area. The site was planned in such a way that the retail space will be in a walking distance.
This semester I am working on my thesis. My thesis topic is “Creative Workspace”. The main theme of the thesis is to create a workspace which would enhance the creativity of the people working in the environment. The site for the project is downtown St Louis, Missouri. Two historic buildings exists in the area. They will be preserved and rehabilitated into apartments for the employees. My thesis is still in progress and will end at the end this summer.