Issue 6- Fabricating my Thesis –
Friction Fit Housing
So last time I explained most of the elements of my thesis
project and left it saying this article would try and best explain friction fit
housing. To start friction fit housing is an interesting concept that dates
back farther than most would think about. Let’s begin with the simplest
friction fit building, the log cabin. Log cabin utilize a very similar building
style in that most of the logs are cut at the ends to resemble the classic toy
the Lincoln log. At full scale log cabins at one time were fit together,
jointed at the ends and then the gaps would be sealed with a number of methods
such as mud or clay. Unlike its frontier day counterpart the modern day
friction fit house uses similar concepts to become a complete house, just
without the mud. The modern day version uses a CNC to precisely cut and number
each piece so that the house can easily be put together by someone who has no
previous building knowledge, very similar to giant puzzle. The benefits of
friction fittings is that they require little to no hardware to assemble, which
also means that they also require little to no tools.
The best example of a
friction fit house completed recently is a project called Housing for New
Orleans done as part of a display at the MOMA in New York called Fabricating
the Modern Dwelling. The project was developed by Lawrence Sass, professor at
MIT, who said that the greatest challenges and benefits of this project were
the testing of new design software’s, building physical models, testing and re-testing
said models, and demonstrating the potential of digitally fabricated
structures. Unlike what you might be thinking about a single housing unit that
fits together like a puzzle, the Housing for New Orleans project not only
functions but is really brings the aesthetics of a classic New Orleans shotgun
house. This project similar to the ones talked about last week all starts in
the digital format. The digital design process utilized needed to do a number
of different things for the design team; it needed to ensure that all the parts
would eventually fit together, it needed to account for all material thickness,
it needed to subdivide all the surfaces on the entire structure to create all
the pieces that would eventually come together to complete the structure, and
it needed to prove it could work. One of the keys things in that list is the
subdivision of surfaces. The MIT team used a series of algorithms to both
subdivide and weave the connect points across the surfaces of the structure.
The purpose of the weaving was to create strength by weaving the pieces. As an
example of what this entailed I liken it to building with Legos. If you take a
handful of pieces and simply stack them end to end on top of each other they
don’t have near the strength as the same pieces stacked in a staggered pattern.
Likewise the weaving of the plywood surfaces enable the structure that has no
screws or nails holding it together to gain its strength from the way the
pieces fit together.
From the images above you can get a greater sense of what
the connections looks like and how they fit together. Friction connected houses
are interesting because of their simple yet complex nature, the precision of
design and their adaptability. For all these reasons I felt that this topic greatly
lent itself and would benefit my thesis proposal. Next time I’ll spend some
time talking about Solar Decathlon houses, what they do and how they perform,
and how my thesis seeks to achieve similar goals.
Photo Credits to: http://www.momahomedelivery.org/
http://www.treehugger.com/modular-design/home-delivery-digitally-fabricated-housing.html
No comments:
Post a Comment